First come, first served?

Cet article est également disponible en français

Last week, we talked about the geopolitics of returning to the Moon. Is is really rational to think that the first to arrive on the Moon will be in a position to prevent others to do their own business there (like some in China and the U.S. are arguing)? That returning on Luna will be a cruel and lawless Far West remake if we don’t take action to regulate it now (as is sometimes suggested by space policy folks & UNOOSA)?

Let us recall this quote from Ye Peijian, a sad witness of the zero-sum game mindset:

“The universe is an ocean, the Moon is the Diaoyu Islands, Mars is Huangyan Island. If we don’t go there now even though we’re capable of doing so, then we will be blamed by our descendants. If others go there, then they will take over, and you won’t be able to go even if you want to. This is reason enough.”Ye Peijian

Recently, we discovered the presence of permanently shadowed regions in some craters of the lunar poles. Because the sunlight never hits them, they are very cold, and some ice accumulated there. A nearby lunar base will be able to extract water 💧 and other useful stuff for our survival there and our return trip to Earth : no need to bring everything with us.

Moreover, there are nearby mountains (dunes?) so high thay they are almost permanently bathed in sunlight ☀️ (almost: they still have <90% illumination time, see this NASA video showing day and night cycles). That’s very convenient to use solar panels, and not have to wait until we have space-certified small nuclear reactors.

It’s the place to be, so chances are everyone will want to settle there at first.

“The” south pole and its permanently shadowed regions sounds like a small place. What about it ?

Map of the permanently shadowed regions of the lunar south pole, highlighted in blue. Illustration by Ernie Wright, 2013.

Let’s keep in mind that this image only represents a part of one of the two poles of the Moon (that is, by the way; one of many celestial bodies of our solar system). Can you see the small red square I drew ?

It’s the Shackleton crater. There is water in it, and it looks like this :

The Shackleton crater. Original image by Jorge Mañes Rubio.

I added the Eiffel Tower on the crater rim so that we can grasp how immense it is. Its diameter is 21km, its area is 3 times Paris intra-muros.

Another composition I made that puts in perspective our current capacities in terms of space robotics : here is, to the 1:1 scale, the trajectory performed by the Opportunity rover, during its 15 years of operations on Mars, overlayed on the Shackleton crater.

15 years of Martian operations for the Opportunity rover, superposed on the Shackleton crater (lunar south pole).

Lunar rovers should be able to drive faster because gravity is lower than on Mars (so it will require less power to move the same mass). We will also be able to send commands multiples times a day. Nevertheless, it gives a rough order of magnitude. We are looking at 15 years of operations 😮.

When we see this, it’s obvious : even if multiple organizations for some reason wanted to establish a presence near the same crater (even if there are dozens, and there are 2 poles), land area won’t be scarce. The “peaks of eternal sunlight” are less common, but as Michael Mealling put it at the LDC 2020 conference:

“Those are whatmore limited than the permanently shadowed regions […] There is so few of them that there is some thought among certain space policy and national defense circles that those are going to be contested areas. If the spots of eternal sunshine at the poles becomes contested areas because people want to use them… I would like to have that problem. There are certain problems that I call Champaign problems. If I can have that problem, I will pop a bottle of Champaign. I will be happy, because that mean that people are developing it and found valuable to be there. And that’s a future I would like to be in, even if there was a little bit of fighting back and forth over who got to be on the top of those peaks.” – Michael Mealling at LDC 2020, around 57m10s.

Let’s hope Michael gets his champaign soon! 🍾

Kevin Cannon, who made some very interesting maps of the lunar south poles highlighting the most valuable locations for various criteria, doesn’t seem to think these special locations will be a source of conflict:

“Not everyone will compete for the same spots: goals/architectures drive site selection, and people have different goals. Peaks of eternal light are lit <90% of time. Still need to do all the engineering to survive the night, so may be worth trading illumination for other factors.”Kevin Cannon on Twitter.

In any case, building infrastructures on the Moon will take a long time – even on Earth, building a city the size of Paris would take years and a pharaonic budget. Nations that will join the game late, for political reasons or lack of vision, won’t be really disadvantaged even if they start lunar activities a decade late. A developing country today that will start its space adventure 50 years from now won’t lack spots to establish an outpost either, whenever they’ll be ready.

We don’t need to fight or exclude each others, or already establish rules to manage conflicts. Space is big. Let it be a friendly, and not a toxic competition. We can decide the rules along the way, with actual operational knowledge (mandatory to design relevant rules).

The zero-sum game exists only in our minds.

Leave a Reply

Your email address will not be published. Required fields are marked *